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A Thermodynamically Complete Model for 
Simulation of One-Dimensional 

Multi-Phase Flows 

Executive Summary 

Recent conflicts and peacekeeping missions have revealed the need for novel warheads 
able to selectively release the blast and fragmentation energy against prescribed targets to 
minimise collateral damage. Analysis of these new warheads is impossible without 
consideration of multi-phase flows involved in the warhead detonation. Warhead 
components, can include composite and inhomogeneous explosives, and fragmentation 
warheads include fragment particles, which could be treated as an additional phase of the 
warhead flow. It also provides the potential capability of tailoring the blast and impact 
energy release at a given time and location that would be of significant benefit to the 
optimisation of the warhead effects against specified targets. 

Numerical analysis of the warhead effects involves at least two stages: 
i) construction of kinetic relationships, which are responsible for the internal and 

chemical processes in the products involved in the multi-phase flow. The 
fitting of these relationships to available test data also involves their 
verification with calculations, employing an accurate numerical scheme; and 

ii) a hydrocode/CFD study of the target effects with a multi-dimensional code 
(likely to be a commercial code with the possibility of incorporation of the 
model), which employs the multi-phase model with the closing kinetic 
relations verified during the previous stage. 

The verification process is likely to be conducted with a one-dimensional code because 
the space accuracy needed for the verification is hard to achieve in the multi- 
dimensional case due to resource limitations. For analysis of the processes involved in 
the warhead detonation we need a numerical method, which would describe 
accurately elementary processes (shock and rarefaction) composing the whole picture 
of expansion of the detonation products and their interaction with the target. The only 
scheme, which explicitly involves solutions adjusted to the elementary problems 
(Riemann problems) is the Godunov method along with the family of follow-up 
schemes (TVD, B. van-Leer scheme, etc). To apply this scheme to the equations of the 
model, certain requirements are necessary for the model's system to be satisfied: the 
equations should be written out in the form of conservation laws and elementary 
solutions should be designed when building up an appropriate Riemann solver. 

Unfortunately, among many models, having been developed recently, only a few can be 
formulated in the form of conservation laws. Very significant progress in this direction has 
been made by E. Romensky, who proposed the conservation law formulations for a large 



variety of models, including a two-phase model from which the present consideration 
starts. 

The present report considers the modelling of two-phase flows and suggests a new 
formulation of the model resulting in a thermodynamic identity that is applicable to the 
case of one-dimensional flows. This formulation establishes a clear link between the 
pressure and energy definitions, embracing the diffusive constituents, which are widely 
used in the theory of mixtures [3], through this thermodynamic identity. The present 
formulation is more convenient for construction of a Riemann solver and its use in the 
Godunov scheme. This formulation is extendable to the case of multiple phases with 
complete thermodynamic closure of the model, using only thermodynamic potential. 

Results of the present study are important for construction of ihe algorithms and 
numerical methods, which are necessary for the verification of kinetic equations involved 
in the process of detonation of advanced warheads. Extension of the model to the case of 
multiple phases is critical for analysis of real-life warheads, because novel volumetric and 
fragmentation warheads involve, as a rule, more than two phases in actual engagement 
scenarios. 
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1. Introduction 

Many modem warheads employ single- or multi-stage initiation designs involving several 
energetic and filling constituents. Thus, chemical and mechanical inhomogeneities are 
widely used for arranging a tailored energy release such as delayed reaction/initiation, 
afterbum, etc. Such the complex energetic materials involve multiple reactive components 
and require description with models, which are capable of calculating multi-phase flows. 
Interest in multi-phase flows is spread world-wide due to application of CFD modelling to 
processes of combustion, heterogeneous detonation, and to processes in gas-Hquid and 
bubble-liquid mixtures. To simulate such tihe processes, models, comprising of the 
conservation laws for mass, momentum and energy, associated with each of the phases, 
are extremely popular; the conservation laws are formulated for partial characteristics 
(additive characteristics with respect to the common volume, contaiiting several phases) 
and interconnected by the exchange terms. However, this approach is not very convenient 
because it involves description of every phase that multiplies the number of equations by 
the factor equal to the number of phases. On the other side, incorporation of such models 
in a hydrocode is hard because the majority of conomercial hydrocodes operate with a 
single system of conservation laws complemented with so-called constitutive equations (in 
the CFD/engineering chemistry communities they are usually called kinetic equations). 
Many attempts to consider multi-phase medium as an averaged one have been made, 
including a classic monograph by Truesdell [3]. However, a closed fhermodynamic 
formulation, resulting in an efficient practical realisation, has not been proposed at that 
time. A variety of models have been recently developed in several papers [4,5]. However, 
they are not in the form of conservation laws, that complicates analysis of their 
tiiermodjmamical correctness and makes application of the Godunov scheme difficult. 

The present work employs a consistent approach, enabling us to derive equations in the 
form of conservation laws; one of the first realizations of this approach has been published 
in [6]. It invokes the mass averaging over two phases, so the effective averaging parameter 
involved is the mass fraction of one of the two phases. Realization of this approach as a 
computer code [6] resulted in significant numerical difficulties associated with the phase 
exchange (convection) in the areas of high gradients between the phases. A note by 
Drumheller [7] was important for understanding that one more parameter associated with 
flie phase concentration should be involved in the processes, which accompany phase 
exchange, reaction processes between the phases, etc. This resulted in introduction of both 
mass and volumetric concentiations in the averaging process and, as a result, several 
successful models [2, 8] based on this approach have appeared: the model [2] is an 
extension of the model [6] for the case of two-phase media with the velocity 
nonequilibrium (drag) between the phases and [8] is a single-velocity two-phase model 
witii the temperature nonequilibrium resulting in a complete fhermodynamic identity, 
enabling one to formulate the Gibbs potential in its classical form. Formulation [2] 
provides a thermodynamicaUy correct model, but known solutions of the Riemann 
problem cannot be easy applied because the pressure and energy characteristics involved 
in the jump conditions are not deduced from a single potential. The generalized pressure 
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and energy can be introduced [3], which involve the diffusion fluxes; however, these force- 
energy characteristics have not been linked within the formulation [2]. 

The present publication is an enhanced formulation of the model [2] for the one- 
dimensional case, allowing us to formulate a complete thermodynamic identity, jump 
conditions in a convenient form for application to the Riemann problem, and to generalize 
the model for the case of multiple phases, linking directiy the presentation [3] for energy 
and pressure with involvement of diffusive components. The multi-phase generalization is 
particularly important for many applications because a typical warhead, for instance, of 
volumetric action may involve at least three phases: gaseous, dispersed, and liquid 
products. 

2. Model of two-phase flows 

Let us denote the average density of a two-phase medium by p=ml V, here m is mass of a 
representative volume and V is the volume quantity. Similarly, we can define specific 
densities of the phases pi=HZi/ Vi and p2=mz/ Va- Multi-phase theories usually deal with so- 
called partial densities, which relate the phase masses to the whole volume such as: 
p'i=im/Vand p'2=1112/ V. The partial characteristics are important because the conservation 
laws for each phase can actually be formulated only for these characteristics. For the case 
of media with phases, which are capable of an exchange with mass and momentum, the 
conservation laws in one-dimensional case take the foUowing form for the first phase: 

dt       8x 

dp[u, , d[p[ul + p[) _ ^^* 

dt ax      ~ "' ^^ 

dp[{e,+ull2) ^ d\p[u,(e,+ull2) + p[u]_^^ 

dt dx 

and for the second phase: 

dp[ , gp>2 _   .„* 
dt        8x 

"aT       dx      ~   "' ^^ 
dp'Xe2 + ull2) ^ d\p[u^(e^+u\l2) + p'^u^] _ ^ 

dt dx 

Here m'o is the mass exchange rate, n*o is the momentum exchange rate, Wj (i=l,2) are 
velocities of the phases, p'l and p'2 are partial pressures within the phases, e\ and 62 are 
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Specific internal energies. Let us denote T - temperature and S - specific entropy, then the 
thermodynamic identity 

TdS = de + pdV = de-pdp/p2, (3) 

being applied to each of the phases, enables us to calculate partial pressure and 
temperature: 

w 

if a dependence of specific energy on p' and S is given: 

ei = ei(p'i,Si) ,   €2 = e2{p'2,52) . (5) 

It should be noted that definition of the partial pressure is based on the application of the 
thermodynamic identity with respect to the partial density. Thus, the traditional approach 
to calculation of two-phase flows is to calculate the systems (1) and (2), pre-selecting the 
exchange terms m*o and n'o, and tabulating the 'equations of state' in the form (5) (for the 
sake of convenience, we caU the relations like (5) as equations of state), using (4) for 
calculation of pressure and temperature. 

The procedure of averaging, having been employed in [6], involves introduction of 
averaged density, pressure, and velocity. On the present stage we do not individualize the 
thermal characteristics of the phases; an example how it could be done for a single-velocity 
material was shown in [8]; therefore, we consider specific entropy to be common for the 
both phases. We introduce [1, 2, 8] the mass concentration of the first phase as c = ci = 
nii/m, then for the second phase C2 = 1112/111 = 1 - c. We can also determine the partial 
densities, because 

p'i=mi/V={mi/m)im/V)=pc  ,      p'2=p(l-c)   . (6) 

Specific energy is an extensive variable, therefore, for a volume containing both phases the 
average specific energy is 

e = cei + {l-c)e2. (^ 

Introducing volumetric concentration of the first phase as6i = 6=Vi/V, we can recalculate 
the specific densities of the phases 

pi=mi/Vr={im/m)iin/V)-{V/Vi)=pc/d   ,     p2 = p(l-c)/(l - 0). (8) 
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Using (7) and (8), we can build up the equation of state for the averaged state, employing 
the 'local' equations of state e-i = ei(pi, S) and 62 = e2{p2, S): 

e{p, c, e,S) = c ei{pc/e, S) + (1 - c) e2ip{l - c)/(l - 0), S) . (9) 

Averaged velocity u is introduced as 

M = C Ml + (1 - c) U2 , (10) 

and the velocity difference between the phases, which is proportional to the so-called 
diffusion velocity [3], was introduced [2, 6] in the form 

10=  Wi -  ll2 . (11) 

Relations (10) and (11) allow us to calculate local velocities via the averaged velocity and 
the velocity difference: 

Ml = M + (1 - C) IV     , U2=U-C10     . (12) 

From (6) and (10): p'l + p'2 = p and p'l MI + p'2 M2 = p M; using these relations and summing 
up the continuity equations in (l)-(2), we can obtain the continuity equation for the 
averaged variables: 

^ + ^ = 0. (13) 
dt     8x 

Rewriting the continuity equation of (1) with the use of (6) and (11), we can obtain the 
kinetic equation for the mass concentration: 

doc    8\puc +pc{l-c)w]       * ,^.. 
-^— + -^ ^—^ '-^ = Wn . (14) 

dt dx " 

Kinetic equation for the volume concentration is chosen in usual form of conservation 
within the liquid volume [1, 2, 6]: 

M + ^^ = 0, (15) 
dt        dx 

here O is a function responsible for the process of phase compaction. 

For further derivations we have to calculate pressure in the averaged medium. Firstly, we 
link the local pressures and densities with the partial ones. In addition to (6), another 
calculation of the partial density for the first phase gives 
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p\=mi/V={mi/Vi)iVi/V)=pie  ,      p'2=p2{l-B)   . (16) 

We consider an alternative to (5) presentation of the equations of state in the form ei = ei{pi, 
S), 62 = eiipz S). Then, from (4) and (16) it follows 

where the following denotations for the local pressures are used: 

ide,/ 2 de-i / 
^i=A /ep^ ' P2=P2 /QP^, 

witih the equations of state given in the form: 

ei = eiipi, S)    ,       62 = e2(p2, S). 

(17) 

(18) 

(19) 

The momentum conservation laws (second equations of the systems (1) and (2)) give the 
following momentum equation for the two-phase medium: 

dpu    d[pu ^ + p + pc{l-c)\v^\_ 

dt dx 

Here the following relations have been used 

p\u-l+ p'2U2 = pU , 

p'l (MI)2 + P'2 (H2)2 = pll^ + p C(l - 0)10^, 

and 

(20) 

(21) 

p=p'l + p'2. 

The latter can also be obtained by direct differentiating of (7) over p and gives the relation 

P=0pi + (1-0)P2. 

The momentum conservation laws of (1-2) can also be rewritten in the following form 
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dt 8x     pi ox 

dt dx     p\  dx 

When using the relation 

(ui)2 - (W2)2 = 2mo + (1 - 2c)i(;2, 

we can derive the equation for the velocity difference: 

(22) 

dw   ^ 

dt "^ 

where 

[mv + (l-2c)i^^ 

dx 
+ 

1 dp[      1  dp[ 

p[ dx     p'2  dx 
^, 

pc pi}-c) 

To simplify the equation, a chemical potential n is introduced [2], which could be equal to 
the classical Gibbs potential if the energy exchange is properly introduced [8]. The 
potential is defined as follows 

H = Cc = ei - e2 + pi/ pi - pa/ pi ■ 

Noting that pi/ pj = pV P'i' ^^ can simplify the last kinetic equation as follows: 

d\v   ^ —+— 
dt 

UW + [X-lc] w + n 

dx 
- = T (23) 

The last set of conservation laws in (l)-(2) deals with the energy conservation. To derive it 
for the averaged medium, we first obtain an auxiliary relation: 

c(Wl)2 + (1 - C)(W2)2 = ifi + c(l - c)ty2. 

Using this relation and (22), we can calculate the following 

p'lMl[ei + (Ml)2/2] + p'2H2[e2 + (U2)2/2] = 

= p{ue + 11^/2 + uc{l-c)zt;2/2 + c(l -c)iu [ei-e2+uiv + {l-2c)z(;2/2]} , 

and from (21): 
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p\[ei + (ui)V2] + p2[e2 + (M2)V2] = p[e + u^l + c(l - c)iv2/2] . 

Finally, 

p'lUl + p'2ll2=p\[u + (1 - C) IV] + p'2[u -CIV] = 

= (p'i+ p'l) u + io[{l -c) p\ -cp'2] =pu + w [p'i(l -c) p'l/ p\-p'2Cp'2/ p'2] = 

= pu + piv [c(l - c) p\l p'l - c(l - c) p'2/ p'2] = pu + pwc{l- c) [pi/ pi - P2I p2] . 

Let us denote 

E = e + c(l - c)tyV2, (24) 

then the energy conservation equation takes the following form for the two-phase 
medium: 

dp\^ + "^)   d\J\E + "^)+ /7M + pci^ - c>v « + Mw + (1 - 2c)^^^ | 

dt dx 
= 0, 

It is seen that it is convenient to calculate the chemical potential from the specific energy E 
including the diffusion term: 

A = Ec = ei-e2 + pi/ pi - P2/ P2 + O-- 2c) iv^/l . 

Then the kinetic equation for the velocity difference (23) takes the following form 

dw    d\mv + A]    „, 

dt dx 
(25) 

It can be noticed that Ew = c(l - c)io, then the energy conservation takes the following form: 

dp[E + "^)   d\pu[E + "^)+ pu + puwE^^ + pE^^Aj 

dt dx 
= 0, (26) 

Summarising, the complete system of equations for a two-phase medium involves 
equations (13-15), (20), and (25-26): 
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dt      dx 

dpu ^ d\pu^+p + pwE^]^^ 
dt dx 

dp\E + "^)   d\pu\E + "/2 )+ Pu + P^^^'E„ + pE^A] 

dt dx ' (27) 
ayoc , a[pMC+ /?£,]__, 

dt dx 
dpO    dpu 6    ^ 

dt       dx 
dw    d\uw + A]    „, 

dt dx 

This is almost identically the system of equations, describing a two-phase medium, which 
has been obtained in [2]. The system is thermodynamically consistent, because if a 
generalized equation of state is given in the form 

E = E(p,S,c, e, iv), 

then the entropy evolution equation can be obtained from (27) and the conditions of 
hyperbolicity deduced [2]. However, within the formulation [2] there is no a 
thermodynamic identity specified, which would clearly relate the forces, appearing asp + 
pxvEw, to the energy E. 

3. Thermodynamic identity 

In this section we are reconsidering the model to derive thermodynamic identity and 
obtain a more convenient system, which could be generalized for the case of multiple 
phases. 

Let us analyze the jump conditions for the system (27). We neglect kinetic rates (the right- 
hand sides in (27)) for derivation of the conditions. Let us denote the jump velocity by D, 
and then the jump conditions take the following form: 

p {u - D) = const , 

pu (ii-D) + P + pioEw = const , 

p{E + w2/2) {u-D) + u{p + pioEv.) + pE„A = const , (28) 

pc {u-D)+ pEw = const , 
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p8 {u - D) = const , 

lu (w - D) + A = const . 

It is well known that for a two-parametric medium (a medium, which can be completely 
described with two parameters, e.g., density and entropy) the conditions of continuity on 
the contact jump appear as tiie equality of pressure and velocity. Here we describe the 
contact jump as a jump, moving with the medium, i.e., the jump velocity is equal to the 
fluid velocity. Let us derive similar conditions for the present two-phase medium. If we 
take u = D, then the contact conditions follow from (28) as 

p + pxoEw = const ,   pEw = const ,  A = const . (29) 

It is seen that the role of pressure play the following functions: p + pivEw, pEw, and A. We 
suppose that these ftmctions relate directiy to the thermodynamic relations of the medium. 
Let us introduce a generalized pressure: 

P = p + piuE„  . (30) 

It should be noted that replacement of pressure by a combination involving also the 
diffusive components has been considered in theories of mixture long ago, by TruesdeU [3] 
and many other researchers, as well as introduction of the diffusion terms in the internal 
energy similarly to (24). A diffusion force for the second relation in (29) could be 
introduced as 

Q=pE„  . (31) 

Thus, the functions, preserved through the contact jump, are P, A, and Q. 

A quantity, which does not change through any jump, is mass m = p {u - D). Then the 
conditions (28) can be rewritten as 

m = const , mil + P = const , m{E + ifi/2) + iiP + AQ, = const , 

mc + Q = const , md = const , m{w/p) + A = const . 

It is seen from these relations that basic variables associated with fluxes of A, and Q are 
mass concentiation c and w/p. Therefore, it is convenient to introduce a new variable (a 
specific diffusion velocity): 

V = iv/p  . (32) 

Now from (24) we can see that 

E = e{p,S,c,B)+p^{l-c)vyi  , (33) 
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and the function Q is calculated as Q = Ev The function A can be calculated as above in 
accordance with A = Ec. However, what is even more important, the generalized pressure 
can be calculated via E as P = p'^Ep. The specific energy also depends on 6, so we have to 
introduce a function n = Ee. From (9) it can be found 

n = c{ei)pi{pc/d)e + (1 - c)(e2)p2(p(l - c)/(l - 0))e = 

= - (Pi)2(^i)pl/P + (pi^iezJpVp = - (Pi - P2)/p ■ 

Putting those equations together, we have: 

T=Es,   P=p2Ep,   A = Ec  ,  Q = Ev  ,  H = Ee . (34) 

Thus, the following thermodynamic identity takes place 

TdS = dE + P dy - A dc - Q du - n d0 . (35) 

The system (27) can be rewritten in the following form 

8t     dx 

Bpu    d\pu^ +Pj _ 
dt dx 

dt dx (36) 
dpc    d[puc + Qj _    . 
______ _|_ ________^^^^___  —   //IQ    5 

6t dx 
dp6    dpu6     . 

dt        dx 
dpv ^ d[puv + h]_^^j 

dt dx 

Concluding, selection of the potential in the form 

E = E{p,S,c, d, V) (37) 

along with the identity (35) closes the model (36). In fact, the potential E can be calculated 
as earlier, using (33) and (9) along with the local equations of state (19). 

10 
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4. Model of multi-phase flows 

In the present section we shall follow more traditional denotations, being used in the 
mixture theories (e.g., [3]), which are associated with the centre mass velocity and 
diffusion velocities. This choice is sometimes more convenient because it is not associated 
with a specific component of a mixture and treats the mixture components equally. Thus, 
for a M-phase medium we denote ci as mass concentration of i-th component of the mixture 
(i=l,... ,n). We suppose that the multi-phase medium has n components and summation 
from i=l up to i= n will be denoted by sign Z. As usual, d = nu/m, where nii is the mass 
fraction of the i-th component in tiie volume V of mass m. Similarly, 0; = Vi/ V that gives Z 
Ci = 1 and 2 0i = 1. At the moment we ignore the interdependence of the variable sets d and 
9i at i=l,... ,n;we wiU recall this fact at the end of the section when this interdependence 
is relevant. We introduce average velocity u exactly how we have done it in the previous 
section: 

u = ZciUi. (38) 

However, to preserve universality, we define the velocity nonequilibrium in a different 
manner in accordance with the traditional choice of diffusion velocities, which is 
proportional to the well-known diffusion fluxes pi(Wi - ii): 

XUi = lli-U   . (39) 

It can be noted that, comparing this choice with ihe choice in the previous section, the 
diffusion velocities would be lUi = m - u = (1- c) w and iV2 = ii2-u = - c lo. It follows 
cwi+{l-c) W2 = 0, or, generally: 

ZciWi = 0. (40) 

The diffusion velocity interdependence will also be ignored at the moment. Keeping in 
mind the results of the preceding section, we select the following variables as the basic 
ones: 

p, S, II, Ci, di, Vi. (41) 

Again, the variables are independent at i=l,...,n-l, but at the moment we consider the 
overdetermined set (41) at i=l,...,n. The local densities are, similar to (8): 

pi = pc/ei   . (42) 

From (39) Ui = ii + pvi, that allows us to determine the kinetic equations for ci: 

dt 8x 

11 



DSTO-TR-1510 

here Qi = fficiVi = pCjXUi (Z £2i = 0 from (40)) and m'i is the mass exchange rate such that Zm'i = 
0, when assuming that for the /-th phase the equations are chosen in the form identical to 
(1) replacing the subscript index '1' by 'i'. Summing up the continuity equations of (1), we 
have the continuity equation for the mixture coincident with (13): 

^ + ^ = 0. (44) 
8t      dx 

The volumetric concentrations behave similarly, regardless of the number of phases: 

^P^ + ^ML = ^ (45) 
8t dx 

Let us define a generalized internal energy of i-th phase, invoking the diffusion energy: 

Ei = ei + WiV2 = ei + ffiv?/! . (46) 

The mass averaging of (46) gives the energy of the mixture, similarly to (33): 

E = ZCiEi = e + Z CiW?/l^e + p^L dViyi , (47) 

here e = Z c^{. Differentiating E over p, we obtain generalized pressure similarly to (30): 

P = p2Ep = p2ep + p3Z Cit7i2 = p2ep + p Z Cir«i2 = p + p Z aiv?- , (48) 

where pressure can be treated as in the preceding section: p = Z p'i = Z 0i pi. For derivation 
of the momentum and energy equations for the mixture we need several auxiliary 
relations: 

ZCiMi2=I/2 + ZCiWi2, 

Z pci (ei + Mi2/2) = p (e + j<2 /2 + Z aw? /2), 
(49) 

Zuip'i = up + pZciiVipi/pi , 

Z pern {Ci + u?/2) = pu (e + ifi /2 + Z awi^ /2) + pu Z aiVi^ + p Z aiviei + p Z aivp /2. 

Summing up the momentum equations in the form (1), we obtain an equation similar to 
(20) with the generalized pressure from (48): 

8pu ^ d{pu'+p)_^ ^5Q^ 

dt dx 

12 
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When summing up, we have to use the momentum balance in the form Zn*i = 0. To derive 
the kinetic equation for the diffusion velocity, we rewrite the momentum equation in the 
following form 

du du.      1  dpi cUf        du.      I op.     I *       *   \i  , 
^ + ",^ + —^ = l«, - ^i", )IPi ' 
dt ox     yO, ox 

(51) 

and the equation (50) in the similar form 

du       du     \ dP    ^ 
— + M— + = 0. 
dt       dx    p dx 

(52) 

Using d {Ci + Pi/Pi) = dp' i/p' i, d (E + P/p) = dP/p and an analogue of (22) in the form Ui^ - u^ 
= liavi + w?-, we can derive the required equation by subtracting (51) from (52): 

dWj    d\u\v. +wf /l)    d 

dt dx dx 
'e,.!^-E-L' 
V       A Pj 

Let us introduce a chemical potential as follows 

Pi 

= (n,-m,u)lp'=^, 

P ^     Pi P Pi 

(53) 

For future references a part of the potential, which is not related to a specific phase will be 
denoted by Ao = E + P/p. Then the equation for specific diffusion velocity takes its final 
form 

dpv, ^ d{puv,+A,) _^^, 

dt dx 
(54) 

The effect of change in volumetric concentration onto the specific energy is taken into 
account by introduction of Eli, similarly to that in the second section: 

rii = Eei = Ci(ei)ei = Ci(ei)pi(pi)ei = - Ci{e^pi(p Ci/Q?) = - pi/p (55) 

Finally, the energy equation is derived by summation of the energy conservation laws in 
the form (1) and use of (49): 

a4^ + "^)   \pu\^ + ^)^)+ Pu + pZc, vv, (g, + wf /2 + p, //?, )j 

dt dx 
= 0 

13 
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One more relation is necessary for finalizing the derivation of the energy conservation 
equation: 

p Z cm {ei + xv?-ll + pi/pi) = Z pcm {d + iv?/! + pi/pi - Ao) = Z Qi Ai , 

here we used definitions of Qiand Ai, and Z Qj = 0. Finally, the energy equation takes the 
following final form 

dp[E + "y^)   dpu(E + ^^/^)+Pu + 'LA.Q.\ 

dt dx 
= 0, (56) 

The complete system of equations, generalising (36), combines (43-45), (50), (54), (56) into 
the following 

dt     dx 

dpu    d(pu^ + P) 
= 0, 

dt dx 

dp[E + "^)   d pu\E + "^)+ Pu + ZA,fi, 

dt dx 
dpc,    dipuc. + Q,) 

dt dx 
dpO, ^ dpuQ, _ ^ 

dt dx 
dpVj    d{puVi+Aj) 

= 0, 
(57) 

i   ' 

dt 
■ + ■ 

dx 
T. 

Concluding the section, we can write out the thermodynamic identity for the multi-phase 
mixture: 

TdS = dE + P dV - Z (Ai + Ao)dCi - Z Qi d^i - Z Hi dft , (58) 

w^hich provides us with the closure relations: 

T=Es,   P=p2Ep,    Ai + Ao=Eei  ,   Qi = Evi  ,   Hi = Em . (59) 

For completeness we have to calculate the function Ao in the following way 

Z CiEei= Z Ci(ei + «;iV2 + pi/pi) = Z Ci(ei + lUi^/l + dip./{op)) = E + p/p = 

= £ + (P - p Z CiiVi'^)/p = Ao - p2Z CiVi^ , 

14 
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that is 

Ao=Zci(Eci+pW) . (60) 

Regarding the entry of the function Ao in the identity (58), we notice that the summation is 
conducted from 1 up to n, so one of the variables is dependent. For example, we can select 
the n-th mass concentration variable Cn to be expressed via the preceding ones, such as 

Cn=l-Cl-... -Cn-l. (61) 

It should be noted that any of these n variables can be selected dependent on other n-1 
ones simply by renumbering and assigning the number n to the pre-selected dependent 
one. Then Ihe first sum in (58) can be rewritten in the form, containing only the first n-1 
independent variables: 

Z(Ai + Ao)dCi = Z'(Ai-An) , (62) 

where Z' is the sunmiation sign from 1 up to n-1. Thus, the relation eventually allows us 
to exclude the function Ao from the consideration. 

Finally, we shall show that the closed system, containing only n-1 independent variables, 
is also thermodynamically consistent. To do this, we select, as for the derivation of (61), 
that the n-th variables Cn, 0n, and % are dependent on the rest of the set (41). Namely, from 
(40), (61), and from the similar relation for 6 we have 

Cn=l-2'Ci    ,       0n=l-2:'0i    ,       CnVn=-I^'CiVi    . (63) 

Scalar functions in the identity (58) are not affected by the dependencies (63), so the 
relations 

T=Es,  P=p2Ep 

are intact. For the next terms in the identity we are conducting separate analyses. The first 
one concerns Z (Ai + Ao)dci, which is reduced to E' (A,- An), according to (62). According 
to (63), increment in c, is also involved in the change of Vn- Therefore, for this analysis we 
have to expand the term Z ^i dt^i as well: 

Z Qi dui = Z' Qi dui + Qn d^n . (64) 

From (63) d(cnyn) = - Z'd (ciUi) and dcn = - Z'dci that give 

VndCn + Cnd^n = CndVn - WnZ'dCi = - Z'^idCi - Z'CidUi 

and 

15 
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Cnd^n = - S' {vi- v„)dci - Z' Cidyi   . (65) 

From (63) and (64) it follows 

Z Qi dUi = Z' Qi dfi - (fin/Cn) P'(l'i- yn)dCi + Z'Cidl^i ] = 
(66) 

=   Z'[Qi - (Qn/Cn)Ci] d^i - (Qn/Cn) I.'{Vi- Vn)dCi     . 

Thus, according to (62) and (66), the term, associated with the change in Ci in the identity 
(58) is actually 

Ai-An-{Qn/c„)iVi-V„)  . (67) 

We have to check out if this term is coincident with Ed. Turning to (42) and (63), d is 
involved inpi, c„ and %; differentiating (47) over a with this in mind and using (65), we 
have 

Eci = Ei+ Ci{ei)pi{pi)ci + En(Cn)d+ Cn(ei)pn(pn)ai(Cn)ci+ Cn(En)vn(Ei)vi/Cn = 

= Ei + pi(ei),,i - En - Pn(en)pn " ^n (^i" fn)/Cn = Ai - An - (^n/Cn) (l^i" ^n)   , 

which is actually coincident with (67). Next stage involves analysis of the term with 
increment in Vi) tihis increment appears only in the term (66) and is equal to Qi - (Qn/Cn)ci. 
We have to check out if it is coincident with Evi. The variable Vi is involved only in v„; 
differentiating (47) over Vi and using (65), we can obtain 

Evi — (Ei)vi + (En)vn(f n)vi = Qi - L2n(Ci/Cn) 

that is identical to Qi - (Qn/cn)ci. The last analysis involves the term of (58) with d0i; taking 
into account the interdependence of 6i in (63), the last term (58) is transformed as follows 

Z Di d0i = Z' Hi dft + Hn d0n = Z' (Hi - nn)d0i  . 

For the set of independent variables di we have to find out if Ili - Iln is equal to Eei. To do 
this, we again differentiate (47) over di: 

Eei = Ci(Ei)ei + Cn(En)en(0n)ei = Ci(ei)9i - Cn(en)9n = Ili - ITn    ■ 

This concludes the analysis and proves that for the set of independent variables (41) at 
i=l,...,n-l the identity can be written out in the following form 

TdS = dE + Pdy- 

-      Z'[Ai-An-(Qn/Cn)(l'i-yn)]dCi- (68) 

16 
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-    Z • [Qi - fin (ci/cn)] dvi - 2' (Hi - Iln) dSi     . 

Keeping the choice of the set of independent variables, the next section is devoted to 
analysis if this set can be used for construction of conservation laws and kinetic equations 
similar to (57). 

5. Model of multi-phase flows with independent 
variables 

Now, when existence of a single thermodynamic potential is obvious, we shall try to 
formulate the model, which would involve the independent variables only. We select the 
set of variables (41) at z=l,...,n-l. We have to rewrite the specific internal energy 
applicable to the present case. From (47) and (63) it follows 

E = Z CiEi = E CiCi + p2Z CiViy2 = Z'CiCi + CnCn + (pV2) LCiVi^ = 
(69) 

= E'Ci(ei - en) + en+ (p'^l7)'Lc<u?  . 

Turning to the system (57), it is obvious, that the mass and momentum conservation 
equations do not suffer any changes associated with the choice of independent variables. 
The energy equation contains the following term ZAiQi, which changes with the new 
choice of variables. With the use of Z Qj = 0, this term is transformed as follows: 

ZAA = Z'AiQi + AnQn = Z'AA-AnZ'fii = Z'a(Ai-An)   . (70) 

It is seen that use of the function A, - An is preferable in the present case. For this function 
to be involved, we have to modify equations for the specific diffusion velocity by 
subtraction of the last one from the rest of them at i=l,...,n-l. We introduce a new 
variable, which is a relative diffusion velocity y'i, as y'i=yi-yn. Then the kinetic equations 
iorvi follow directly from (57): 

dpvl ^ d{puv; + A])_^^^, 

dt dx '' 

Here A'l = Ai - An and ^'i = Wi - Vn. Let us calculate a sum of the diffusion terms in (69), 
using a new notation for the relative diffusion velocity and (63): 

ZCil7i= 'L'CiVi+CnVn = 'L'CiVi+ (1 - Z'Ci) Vn = ^'Ci{Vi- Vn) + Vn = Z'CiU'i+ ^n = 0  , 

Vi=v'i + v„=v'i-Z'cp'j   , (72) 

17 



DSTO-TR-1510 

ZCiVi^ = Z'ciVi^ + CnVr? = Z'ci(i;'i - 2:'Cjy'j)2 + (1 - Z'Ci)(2'qi;'j)2 = 

= Zci(t;'i)2 - 2 (2'ci i;'i)(Z'qz;'j) + (Z'ci)(Z'cji;'j)2 + (E'cjy'j)^ - 

- (Z'Ci)(Z'qi;'j)2 = Z'Ci(y'i)2 - (Z'Cji;'j)2 . 

Thus, the set of independent variables (41) is transformed into 

p, S, u, Ci, Bi, v'i,    i=l,...,n-l. 

Using (71), the system (57) takes the following form: 

dp    dpu 

(73) 

0, 
dt     dx 
dpu   e(pu^ +p)_ 
dt dx 

dpyEW/^   dpu\EW/^+Pu + i:'K\a, 

Jt dx dt 

doc.    dipuci + Q,) 

dt dx 

dpOj     dpudf 

= 0, 
(74) 

■ + ■ = ^,, 
dt dx 

dpv] ^ d{puv',+A\) _^^^, 

dt dx 

at i=l,...,n-l. With the formula (72) the specific energy (69) is written out as follows 

E = Z'ci(ei-en) + en+(p2/2)[Z'Ci(z;'i)2-(Z'qi;'j)2]   . (75) 

Finally, we have to adjust the thermodynamic identity (68) to the variables (73). It is clear 
that the equations T=Es and P = p'^Ep preserve their form because the transformation does 
not touch scalar variables. Let us differentiate the specific energy (73) over the variables d, 
0i, and v'i. When differentiating over Ciand using (63), we have 

Ed = ei - en + Ci(ei)pi(pi)ci + Cn(en)pn(pn)cn (Cn)d + (p2/2)[(y'i)2 - 2 {L'cp))v'i] = 

= ft - en + pi(ei)pi - pn(en)pn + (p2/2) v'i [v i + 2%] = 

= Si - en + Pi/pi - Pn/pn + p2(i;i2 - i;n2)/2  , 

which is exactly Ai - An = A'i from (53). Let us differentiate E over ft and use (63): 

18 



DSTO-TR-1510 

Eei = Ci(ei)pi(pi) ei + Cn(en)pn(pn) en (0n)ei= - Pi/P + Pn/p ■ 

Thus, the function rii in (59) has to be transformed into 

n'i = ni-nn. (76) 

The last step is differentiation of E in (75) over v'i with the use of (72): 

Evi=p^[civ'i-{rcp)yci]=p^Ci[v\-rcp)]=p2ciVi   . (VT) 

It is seen from (43) that E^i is exactiy coincident with Qj. 

Thus, the thermodynamic identity can be easily written out for the present case: 

TdS = dE + Pdy-Z'A'idci-Z'Qidy'i-Z'n'idft . (78) 

Thus, if the potential E is given, the functions involved in the system (74) are explicitiy 
calculated with the help of ihe identity (78). 

It is interesting to note that the present case is directly reducible to the case of the two- 
phase media at n=2 derived in the third section because w = v'i, and A = A'l and Q = Q'l. 

The identity (78) gives us the rules for calculation of the functions entering (74) via the 
potential E(p, S, Cudi,v'i): 

T = Es,  P=p2Ep,   A'i = Eci  ,   Qi^Ev-i  ,  n'i = E0i. (79) 

Expanding the energy equation in (74) and applying (79), we can obtain the following 
entropy evolution equation: 

/?r—= -z'A>;-s'n;a),-z'Q,'i'/ . (so) 
dt 

here d/dt = d/dt + u -d/dx is the particle derivative. Using (80), the correctness requires the 
following entiopy nondecreasing condition to be satisfied: 

-Z'A'i7«*i-2'n'iOi-2'QiTF'i>0 . (81) 

An equivalent condition could also be derived from the overdetermined system (57), (58): 

pr^ = -ZA,m;-2:n,<D,-ZD,T,    , (82) 
dt 
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here relations Z Qj = 0 and Z ni'i = 0 have been used. It is interesting to note that for the 
choice of kinetic relations suggested in [2] as m'i = 0, Oi = -pUi/x, Wi= - KQI , the entropy 
nondecreasing condition is satisfied automatically. Moreover, the Onsager principle [9] is 
satisfied, because the quadratic form pZ (IIO^/T + KZ (Qi)2, appearing for this case as the 
right-hand side in (82), is symmetrical. 

6. Hyperbolicity of the two-phase model 

In this section we analyse eigenvalues of \he system (36). Hyperbolicity of the prototype 
system (27) has been considered in [2] and the eigenvalues have been calculated for the 
case of absence of diffusivity (lo = 0). To analyse the system (36) we shall rewrite it in the 
following form, replacing the energy conservation law with die entropy evolution 
equation (similar to the equation (80) for the case of two phases): 

dp       8u     . 
-^ + P— = 0, 
dt       8x 

dt     p dx     p dx     p 8x     p dx     p dx 

dc    ^p dp    a, 8c    Q^ 80    Q., 8v    _ 
— + —i--^ + —-— + —-— + —■ = 0, 
dt      p  8x     p 8x     p  dx     p 8x /g^x 

^ = 0, 
dt 

^ = 0. 
dt 

dt     p  8x     p dx     p  8x     p 8x     p 8x 

here d/dt = d/dt + ii-d/dx - is the particle derivative, and we have neglected the right-hand 
sides, because tliey do not affect the characteristic behaviour of the system. The system can 
in general be written out in the following matrix form: 

^.A^^O. (84) 
8t        8x 

where U=[p,u, c, 6, s, v], and A is matrix of coefficients of the system (83). As a result, the 
characteristic equation of the system det(A - Ai) = 0 for eigenvalues X is specified to the 
following characteristic determinant: 
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det 

X p !    0    I    0    1   0    !    0   ^ 
X               _!_•               -i                      1     - 

P.IP X !  PCIP   \  PelP  \  PSIP   \   PJP 

^.IP 0 1     x'     \ ^ofp \      0      i ^JP 
0 0 -j—0—r-7-1—0—r  0 
0 0 -T--o-r-o--]--7~"["o-- 

^.IP 0 1 Kjp \ h,lp j Kjp 1     x'   j 

= 0   , (85) 

where x = w - ^ and x' = X + ^O' ^0 = Evc/p. Expanding (85), the characteristic polynomial 
takes the following form 

x'\x' X 
j2 r^Pv -p 

J p p "   p'     ' 

p p P 

(86) 

= 0 

Combining the first and fifth terms in the square parentheses and memorizing the zero 
double root x = 0, the polynomial for the rest four roots is reduced to the following 

[x'-pAx'^-yK^. 

KP P P P J 

(87) 

0 

Let us introduce the following denotations: 

A = Epc,    B = Epv,   0i = Ecc/p,   02 = Ew/p,    l^ = P,. (88) 

Then, from the consequence (34) of the thermodjniamic identity we can obtain 

Ap = A,  Pc=p2A,  £2p = B,  Pv = p2B,  Ac/p = 0i,   Qv/p = 02. (89) 

We use the following denotations throughout the section P = Pp and fc^ = 0i-02. It is 
assumed that Pp, 0i and 02 are positive. That gives us the following set of conditions in 
terms of the equation of state 

(p2Ep)p > 0,    Ecc > 0,    Ew > 0 . 

Then the characteristic equation takes the following form: 

(90) 

21 



DSTO-TR-1510 

F{z) = (z' -I'h" -01 •eJ+2MBj'-p(A^02 +B'Q,)=0. (91) 

With use of (9), (24) and (88) we can calculate one of the coefficients: 

A-B=py(fc2_/2 + p2y2)     . (92) 

It can be straightforward checked out that the polynomial is exactly coincident with the 
one derived in [2]. The present polynomial has a simpler form just because of the term 
reduction associated with the generalization of pressure and energy; the present 
generalization contributes in additional terms related to the density derivatives of the 
diffusion components which are involved in the characteristic polynomial of [2] as a 
separate term. It has been shown in [2] that roots of the characteristic polynomial are real 
in the vicinity of a state wUhxu = 0{v = 0 for the present model). In fact, this state gives B = 
0 and eo = 0, resulting in the following bi-quadratic equation 

(X2-Z2)(x2-^2)-pA2e2 = 0   . 

The present simpler form of the characteristic polynomial allows us to assess the 
hy perbolicity of the model in a wider range of parameters. To study the polynomial roots 
we will check the number of sign changes. Firstly, we rewrite the polynomial in a form, 
which is more convenient for the analysis employing new variable z = x + eo/2. Expanding 
(91) with help of (92), we can obtain the equation for z: 

P{z) =z*- 2p-z2 + 2q-z + r = 0 , (93) 

where 

p = (/c2+P+eo2/2)/2 , 

q = (/c2-/2)-eo/2 + p^v-ik^-P + p^v^)  , 

r = fc2./2  - (/c2 +12- eo2/4)-602/4 + (^2 _ /2 + p2y2) .p2t;.eo _ p(A2e2 + B20i)     . 

It is obvious that the poljmomial (93) has the positive sign at large enough negative and 
positive values of z. If we show that the polynomial is negative at two certain points and 
has the positive sign at a point between the two then it means that the polynomial has four 
real roots. We choose the following three points: 

z_ = _ pi/2,   z+ = pV2 , zo = q/p   . 

Then from (93): 

P{z-) = - p2 - 2qpV2 + r , 

P{z+) = - p2 + 2qpV2 + r , 
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P(zo) = qVp* + r • 

If we demand that P(z-) < 0, P{z+) < 0 and P(zo) > 0 then the polynomial (91) will have four 
real roots. To satisfy these conditions it is sufficient that 

r>0   ,      p2>r+2|q| pV2 . (94) 

When the denotations in (94) having been decoded with (88)-(89), these conditions (94) 
along with (90) give necessary conditions of existence of 4 roots of the characteristic 
polynomial (91). When the generalized specific energy E is specified, the conditions (94) 
can be straightforward checked out. The values Z-, z+, and Zo can be used for the root 
separation. The estimate (94) is not the best possible one; for instance, choice of q/ (2p) as Zo 
would give less restrictive assessment for the coefficient r in (94). However, the conditions 
(94) demonstrate that there is a fairly wide range of parameters, which guarantee existence 
of real roots of the characteristic polynomial. 

7.  Discussion and Conclusion 

A model for multi-phase flows has been built up and the thermodynamic identity derived, 
allowing us to close the model with a single thermodynamic potential - a generalized 
specific energy E. In doing so, a Link between the generalized pressure and energy, 
involving the diffusion terms, has been established for the one-dimensional case. A 
condition of hyperbolicity has been formulated for the two-phase model for a range of 
parameters specified by the equation of state. 

Probably it is possible to generalize a three-dimensional variant of the model [2] to the 
multi-phase case (in fact, after the manuscript has been prepared, the author received an 
information from Prof. E. Romensky that a generalization of the prototype model [6] has 
been conducted in [10]); however, the thermodynamic identity cannot be generalized in 
the same manner because in the present case the force-energy link is scalar and this fact 
has been essentially employed in the present report; whereas in the three-dimensional case 
this link is of essential tensorial nature. 

It would be interesting to check out if the generalized specific energy E could be selected 
as a general dependence upon the specific diffusion velocity Vi. The present selection as the 
quadratic dependence reflects consistency with the inter-phase behaviour and it has been 
used for the design of the model, but this dependence is not necessary from the point of 
view of thermodynamics of the averaged mixture. In that case this dependence could be 
treated as a specific form of the generalized equation of state. 
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